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@ Shocks arrival times:

o (non) homogeneous Poisson process,
@ renewal process.

@ Kinds of shocks:

o extreme shock models (possible immediate failure),

o cumulative shock models (increase of intrinsic characterisic:
accumulated deterioration, failure rate, age, number of already
endured shocks, ...),

o mixed shock models.

@ Possible dependence between:

o arrival times and shock magnitudes,

o arrival times and probability of system failure at shocks.
@ Usually:

o one single kind of intrinsic characterisic is considered for the
system,
o one single type of dependence is considered.

@ F. Mallor and J. Santos. Classification of shock models in system reliability.
Monografias del Semin. Matem. Garcia de Galdeano, 27: 405-412, 2003.
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failure threshold L.
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@ Two-component series system.
@ Intrinsic characteristics:
o first component: failure rate h (t),
@ second component: accumulated (non negative) deterioration (Gt),~,
failure threshold L.
@ Mixed shock model:
@ arrival times: Ty, ..., Tn, ..., non homogeneous Poisson process (Nt),~
with intensity dA (x) = A (x) dx,
@ probability for a shock at time T, not to be fatal (Bernoulli trial): q (Tn),
@ increment of failure rate (first component) at time Ty: V,gl); failure rate at
time t:

N
X =h (o) + 3,
n=1

——
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@ increment of deterioration (second component) at time T: Vrsz);
deterioration at time t:

Ny
xP =6+ > vP.
n=1



The model (1)

@ Assumptions:
oV, = (v,&l),vn(z)) are i.i.d and independent of (Nl)tzo, so that

N
A= (A9 AP) =3V,
n=1

is a bivariate compound non homogeneous Poisson process,

o fatality of a shock at time T, (with probability 1 — g (T»)): depends
on all other things only through Th,

o both components are conditionaly independent given (Ft),~,
where 7 = o (A, t > 0). N
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is a bivariate compound non homogeneous Poisson process,

o fatality of a shock at time T, (with probability 1 — g (T»)): depends
on all other things only through Th,

o both components are conditionaly independent given (Ft),~,
where 7 = o (A, t > 0). N

@ Stochastic dependence between components:

o simultaneous shocks on both components,

o dependence between increments of failure rate (first component)
and deterioration (second component),

o fatality of a shock: identical for both components,

@ Other dependence:
o arrival time and fatality of a shock are correlated.



@ J. H. Cha and M. Finkelstein. On a terminating shock process with independent
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J. H. Cha and J. Mi. Study of a stochastic failure model in a random environment.
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System lifetime

@ System lifetime:
T =min (71,72, 73) .

@ Components intrinsic failure times on [0, t]:

P(r > t|FR) = e X7 8 _ g-HOg— ALY ds _ o—Hg— st -V

P(r > t|R) =P (xt(z) < L|]—‘t) —p (Gt +A? < L\]—'t) = Fq, (L _ A§2>)

= /Ot h(s) ds.

where

@ Time to the first fatal shock:
P (75 > t|F) Hq (T).

71, T2 and 73 are conditionnaly independent given ;.



Computation of the reliability (1)

Proposition
The reliability is given by

RL(t) =P(r >t)=e "W (L),

with

Proof.

R(t)=P(r >t, 72 >t, 73 >t)
=E [E (Linstmstmsty | Fr)]
=E [E (1¢r>017) B (Lol 7) B (Linsn 7))
=e MWg(L).
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Computation of the reliability (I1)

Theorem
The Laplace transform of ¢ (L) with respect to L is given by

di(s) = Fo,(s)in(s)

where
n(s) = e~ MO+(@N)ii(-s))(t)

and

@ /i is the bivariate Laplace transform of the distribution /. of
V= (VO v@).

i(u,s) = // e 172 (dvy, dv,), allu,s > 0,
R}

@ /i(+,s):u — fi(u,s),alls>0.
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Proof.
We have:

N
7 R 5N (1)
¢)I(S) = /0 e st E |:FG[ (L —_ At(2)> e Z\zl(t T,)Vi Hq(TI):| dL

i=1

T, o

with

/Om e "Fg, (L - Afz)) dL

(2) ~
=e N Fq(s)

= 73 Z\Nllvw @ IEGt(S)

(easy computation).



This provides:

with
SN e ® s s y@ M
6(s)=F |e” =i=("TNVi"e i=1 Vi HQ(Ti)
- K {e S (=Tiv sy @ - lnq(Tl)) {Tuﬁl}:|
:E(e 5 e (v V2 >T))
- (e—Mws t)
where
s t(V1, V2, W) = ((t —w)vi +sv2 —Ingq(W)) Liw<t}

and

V=2 o
I

is a Poisson random measure with intensity measure

v (dvy, dvy, dw) = p(dvy, dvo)A(w)dw.



Based on the formula for functionnal Laplace transforms of Poisson
random measures:

0 (s) = exp (—///R3+ (1—e ¥) du)

/// —e 1/)5‘ dv

R3

= /// (1 — e*w“("l"’z""’)) (1(dvy, dva) A (w)dw
&

= A(t) = [(aA) = (a(s)](t)

(easy computation).

with

@ Erhan Cinlar. Probability and stochastics, volume 261 of Graduate texts
in Mathematics. Springer Science + Business Media, 2011.
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New Better than Used property

Theorem
Assume that:

e e H() is NBU,
@ Fg,.. < FgFe, (OKif (Gt)i>0 is a univariate subordinator).
Then 7 is NBU as soon as one of two following conditions is satisfied:

1. g is non increasing and \ is constant,
2. g is constant and A is super-additive.



Proof.
The point: show that

pris(L) < di(L)os(L)
with
o o N
¢S+1(L) =E |:FGt+s (L - ZV|(2)> e HS (t4+s—T) H q(TI
i=1

Using Fg,,, < Fg,Fg,, Nt < Ntys and non increasingness of g, we get:

N¢ N,
5N (1)
Ps(l) <E [Fel (L— ) vi‘2)> e~ TV T g(my)
i=1

i=1

Nits Nete

X Fg, | L— Z Vi(2) — (s H o(Ti — 1)

e i=N¢+1




Proof.
The point: show that
Pres(L) < e(L)os(L)

with
Nits N|+s
_ t+s
bon(l) = B [F (L— zv@) o o)
i=1

Using Fg,,, < Fg,Fg,, Nt < Ntys and non increasingness of g, we get:

Nt N
oM (1)
$sit(L) < B [Fel (L—§)vi‘2)>e ST TTa(m)
i=1

i=1

Nits Ni+s
x Fo, (L= > v@|e S (5= (1Y) H q(Ti —t)
i=N¢+1 i=N¢+1

N 2) —ZNS)(S—T([)) NS ®
Z] 1VJ+Nt € = ! H (T )

where
. . t
j=Ne—i, N =Nes—Neand T = Ty — t.



We get:

N¢ Nt
N (1)
gsu(L) <E [Fem <L‘ZV52)> e = Tam)
i=1 i=1

N 0] N
5N o7 (1)
< B [ Fo, (L= 3 Vin @ | e S5 T T q(r0)| &
=1 j=1

Based on the independent increments of (Nt ),

psit(L) < ¢r(L) x ol (L)

where

(©
: W 1O @

(L) =B |Fe, (L= D v® | e= == =TT T (1)
j=1 j



The point now: show that 4" (L) < ¢s(L).

@ If \is constant: ¢{) (L) = ¢s(L).
@ If g is constant and A is supper-additive:

A(s+t)—A(t) > A(s),

we use the fact that
(t)
(Tn )nZO Sst (T”)nZO

to conclude that ¢ (L) < ¢s(L).

@ M. Shaked and J. G. Shanthikumar. Stochastic orders. Springer Series in Statistics.

Springer, 2006.
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Influence of the model parameters

Theorem
Two different systems with identical parameters except from one
parameter.

1. Ifg(w) < G(w), then 7 <g 7.
2. 1fA>Aand g is non decreasing, then 7 < 7.
3. IfV <o V (namely Fy < Fg), then 7 <g 7.
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Conclusion

@ Conditions for 7 to be IFRA, IFR, DMRL???

@ The lifetime is all the shorter as A is larger: only under the
condition on non decreasingness of q. Can we remove this
condition???

@ Development of statistical estimation procedure???
@ Study of condition-based maintenance policies???



