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Classical shock models
Shocks arrival times:

(non) homogeneous Poisson process,

renewal process.

Kinds of shocks:

extreme shock models (possible immediate failure),

cumulative shock models (increase of intrinsic characterisic:

accumulated deterioration, failure rate, age, number of already

endured shocks, ...),

mixed shock models.

Possible dependence between:

arrival times and shock magnitudes,

arrival times and probability of system failure at shocks.

Usually:

one single kind of intrinsic characterisic is considered for the

system,

one single type of dependence is considered.

F. Mallor and J. Santos. Classification of shock models in system reliability.

Monografías del Semin. Matem. García de Galdeano, 27: 405–412, 2003.
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The model (I)
Two-component series system.

Intrinsic characteristics:

first component: failure rate h (t),
second component: accumulated (non negative) deterioration (Gt )t≥0,

failure threshold L.

Mixed shock model:

arrival times: T1, ..., Tn, ...; non homogeneous Poisson process (Nt )t≥0

with intensity dΛ (x) = λ (x) dx ,

probability for a shock at time Tn not to be fatal (Bernoulli trial): q (Tn),

increment of failure rate (first component) at time Tn: V
(1)
n ; failure rate at

time t :

X
(1)
t = h (t) +

Nt∑
n=1

V
(1)
n︸ ︷︷ ︸

A
(1)
t

,

increment of deterioration (second component) at time Tn: V
(2)
n ;

deterioration at time t :

X
(2)
t = Gt +

Nt∑
n=1

V
(2)
n︸ ︷︷ ︸

A
(2)
t

.
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The model (II)

Assumptions:

Vn =
(

V
(1)
n ,V

(2)
n

)
are i.i.d and independent of (Nt )t≥0, so that

At =
(

A
(1)
t ,A

(2)
t

)
=

Nt∑
n=1

Vn

is a bivariate compound non homogeneous Poisson process,

fatality of a shock at time Tn (with probability 1− q (Tn)): depends

on all other things only through Tn,

both components are conditionaly independent given (Ft )t≥0,

where Ft = σ (At , t ≥ 0).

Stochastic dependence between components:

simultaneous shocks on both components,

dependence between increments of failure rate (first component)

and deterioration (second component),

fatality of a shock: identical for both components,

Other dependence:

arrival time and fatality of a shock are correlated.
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System lifetime

System lifetime:

τ = min (τ1, τ2, τ3) .

Components intrinsic failure times on [0, t ]:

P (τ1 > t |Ft ) = e
−
∫

t
0

X
(1)
s ds = e

−H(t)
e
−
∫

t
0

A
(1)
s ds = e

−H(t)
e
−
∑Nt

i=1
(t−Ti )V

(1)
i

P (τ2 > t |Ft ) = P
(

X
(2)
t ≤ L|Ft

)
= P

(
Gt + A

(2)
t ≤ L|Ft

)
= FGt

(
L− A

(2)
t

)
where

H (t) =

∫ t

0

h(s) ds.

Time to the first fatal shock:

P (τ3 > t |Ft ) =

Nt∏
i=1

q (Ti ) .

τ1, τ2 and τ3 are conditionnaly independent given Ft .
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Computation of the reliability (I)

Proposition

The reliability is given by

RL(t) = P(τ > t) = e
−H(t)φt (L),

with

φt (L) = E

e
−
∑Nt

i=1
(t−Ti )V

(1)
i FGt

L−
Nt∑

i=1

V
(2)
i︸ ︷︷ ︸

A
(2)
t


Nt∏

i=1

q(Ti )

 .

Proof.

RL(t) = P(τ1 > t , τ2 > t , τ3 > t)

= E
[
E
(
1{τ1>t,τ2>t,τ3>t}|Ft

)]
= E

[
E
(
1{τ1>t}|Ft

)
E
(
1{τ2>t}|Ft

)
E
(
1{τ3>t}|Ft

)]
= e

−H(t)φt (L).
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Computation of the reliability (II)

Theorem

The Laplace transform of φt (L) with respect to L is given by

φ̃t (s) = F̃Gt
(s)ν̃t (s)

where

ν̃t (s) = e−Λ(t)+((qλ)∗µ̃(·,s))(t)

and

µ̃ is the bivariate Laplace transform of the distribution µ of

V =
(
V (1),V (2)

)
:

µ̃(u, s) =

∫∫
R2

+

e−uv1−sv2µ(dv1,dv2), all u, s ≥ 0,

µ̃(·, s) : u → µ̃(u, s), all s ≥ 0.
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Proof.

We have:

φ̃t (s) =

∫ ∞
0

e
−sL E

[
FGt

(
L− A

(2)
t

)
e
−
∑Nt

i=1
(t−Ti )V

(1)
i

Nt∏
i=1

q(Ti )

]
dL

= E

[(∫ ∞
0

e
−sL

FGt

(
L− A

(2)
t

)
dL

)
e
−
∑Nt

i=1
(t−Ti )V

(1)
i

Nt∏
i=1

q(Ti )

]

with ∫ ∞
0

e
−sL

FGt

(
L− A

(2)
t

)
dL

= e
−sA

(2)
t F̃Gt

(s)

= e
−s
∑Nt

i=1
V

(2)
i F̃Gt

(s)

(easy computation).
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This provides:

φ̃t (s) = F̃Gt
(s) θ (s)

with

θ (s) = E

[
e
−
∑Nt

i=1
(t−Ti )V

(1)
i e
−s
∑Nt

i=1
V

(2)
i

Nt∏
i=1

q(Ti )

]

= E
[
e
−
∑+∞

i=1

(
(t−Ti )V

(1)
i

+sV
(2)
i
−ln q(Ti )

)
1{Ti≤t}

]
= E

(
e
−
∑∞

i=1 ψs,t (V
(1)
i
,V

(2)
i
,Ti )

)
= E

(
e
−Mψs,t

)
where

ψs,t (v1, v2,w) = ((t − w)v1 + sv2 − ln q(w)) 1{w≤t}

and

M =
∑

i

δ
(V

(1)
i
,V

(2)
i
,Ti )

is a Poisson random measure with intensity measure

ν (dv1, dv2, dw) = µ(dv1, dv2)λ(w)dw .
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Based on the formula for functionnal Laplace transforms of Poisson

random measures:

θ (s) = exp

(
−
∫∫∫

R3
+

(
1− e−ψs,t

)
dν

)

with ∫∫∫
R3

+

(
1− e−ψs,t

)
dν

=

∫∫∫
R3

+

(
1− e−ψs,t (v1,v2,w)

)
µ(dv1,dv2)λ(w)dw

= Λ(t)− [(qλ) ∗ (µ̃(·, s))] (t)

(easy computation).

Erhan Çinlar. Probability and stochastics, volume 261 of Graduate texts

in Mathematics. Springer Science + Business Media, 2011.
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New Better than Used property

Theorem

Assume that:

e−H(s) is NBU,

FGt+s
≤ FGt

FGs
(OK if (Gt )t≥0 is a univariate subordinator).

Then τ is NBU as soon as one of two following conditions is satisfied:

1. q is non increasing and λ is constant,

2. q is constant and Λ is super-additive.
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Proof.

The point: show that

φt+s(L) ≤ φt (L)φs(L)

with

φs+t (L) = E

[
FGt+s

(
L−

Nt+s∑
i=1

V
(2)
i

)
e
−
∑Nt+s

i=1
(t+s−Ti )V

(1)
i

Nt+s∏
i=1

q(Ti )

]
.

Using FGt+s
≤ FGt

FGs
, Nt ≤ Nt+s and non increasingness of q, we get:

φs+t (L) ≤ E
[

FGt

(
L−

Nt∑
i=1

V
(2)
i

)
e
−
∑Nt

i=1
(t−Ti )V

(1)
i

Nt∏
i=1

q(Ti )

× FGs

L−
Nt+s∑

i=Nt +1

V
(2)
i

 e
−
∑Nt+s

i=Nt +1
(s−(Ti−t))V

(1)
i

Nt+s∏
i=Nt +1

q(Ti − t)

︸ ︷︷ ︸


FGs

(
L−

∑N
(t)
s

j=1 Vj+Nt

(2)

)
e
−
∑N

(t)
s

j=1
(s−T

(t)
j

)Vj+Nt
(1) ∏N

(t)
s

j=1 q(T
(t)
j )

where

j = Nt − i, N
(t)
s := Nt+s − Nt and T

(t)
j := TNt +j − t.
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We get:

φs+t (L) ≤ E
[

FGt

(
L−

Nt∑
i=1

V
(2)
i

)
e
−
∑Nt

i=1
(t−Ti )V

(1)
i

Nt∏
i=1

q(Ti )

× E

FGs

L−
N

(t)
s∑

j=1

Vj+Nt

(2)

 e
−
∑N

(t)
s

j=1
(s−T

(t)
j

)Vj+Nt
(1)

N
(t)
s∏

j=1

q(T
(t)
j )

∣∣∣∣∣∣Ft


Based on the independent increments of (Nt )t≥0:

φs+t (L) ≤ φt (L)× φ(t)
s (L)

where

φ
(t)
s (L) = E

FGs

L−
N

(t)
s∑

j=1

Vj
(2)

 e
−
∑N

(t)
s

j=1
(s−T

(t)
j

)Vj
(1)

N
(t)
s∏

j=1

q(T
(t)
j )

 .
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The point now: show that φ
(t)
s (L) ≤ φs(L).

If λ is constant: φ
(t)
s (L) = φs(L).

If q is constant and Λ is supper-additive:

Λ (s + t)− Λ (t) ≥ Λ (s) ,

we use the fact that (
T

(t)
n

)
n≥0
≤st (Tn)n≥0

to conclude that φ
(t)
s (L) ≤ φs(L).

M. Shaked and J. G. Shanthikumar. Stochastic orders. Springer Series in Statistics.

Springer, 2006.
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Influence of the model parameters

Theorem

Two different systems with identical parameters except from one

parameter.

1. If q(w) ≤ q̃(w), then τ ≤st τ̃ .

2. If Λ ≥ Λ̃ and q is non decreasing, then τ ≤st τ̃ .

3. If V ≤lo Ṽ (namely FV ≤ FṼ ), then τ ≤st τ̃ .
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Conclusion

Conditions for τ to be IFRA, IFR, DMRL???

The lifetime is all the shorter as Λ is larger: only under the

condition on non decreasingness of q. Can we remove this

condition???

Development of statistical estimation procedure???

Study of condition-based maintenance policies???
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